Many-Valued Modal Logics II
نویسنده
چکیده
Suppose there are several experts, with some dominating others (expert A dominates expert B if B says something is true whenever A says it is). Suppose, further, that each of the experts has his or her own view of what is possible — in other words each of the experts has their own Kripke model in mind (subject, of course, to the dominance relation that may hold between experts). How will they assign truth values to sentences in a common modal language, and on what sentences will they agree? This problem can be reformulated as one about many-valued Kripke models, allowing many-valued accessibility relations. This is a natural generalization of conventional Kripke models that has only recently been looked at. The equivalence between the many-valued version and the multiple expert one will be formally established. Finally we will axiomatize many-valued modal logics, and sketch a proof of completeness.
منابع مشابه
Reduction of Many-valued into Two-valued Modal Logics
In this paper we develop a 2-valued reduction of many-valued logics, into 2-valued multi-modal logics. Such an approach is based on the contextualization of many-valued logics with the introduction of higher-order Herbrand interpretation types, where we explicitly introduce the coexistence of a set of algebraic truth values of original many-valued logic, transformed as parameters (or possible w...
متن کاملMany-Valued Non-Monotonic Modal Logics
Among non-monotonic systems of reasoning, non-monotonic modal logics, and autoepistemic logic in particular, have had considerable success. The presence of explicit modal operators allows flexibility in the embedding of other approaches. Also several theoretical results of interest have been established concerning these logics. In this paper we introduce non-monotonic modal logics based on many...
متن کاملA Hennessy-Milner Property for Many-Valued Modal Logics
A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Henne...
متن کاملA New Representation Theorem for Many-valued Modal Logics
We propose a new definition of the representation theorem for many-valued logics, with modal operators as well, and define the stronger relationship between algebraic models of a given logic and relational structures used to define the Kripke possible-world semantics for it. Such a new framework offers a new semantics for many-valued logics based on the truth-invariance entailment. Consequently...
متن کاملLogic Methods for Many-valued Logics: Higher-order Autoepistemic Language Concepts
The higher-order types of Herbrand interpretations for databases arise often in practice when we have to deal with uncertain or imprecise information, or in constrained databases. They are a consequence of the introduction of a kind of the observational equivalence for the hidden information in the ordinary Herbrand interpretations. It means that the logics for such databases are particular fun...
متن کاملNew Representation Theorem for Many-valued Modal Logics
We propose a new definition of Representation theorem for many-valued modal logics, based on a complete latice of algebraic truth values, and define the stronger relationship between algebraic models of a given logic L and relational structures used to define the Kripke possible-world semantics for L. Such a new framework offers clear semantics for the satisfaction algebraic relation, based on ...
متن کامل